Tag Archives: PLL

Micro-Tel SG-811/ADF41020 PLL: working out the details – loop filter, bandwidth, charge pump currents

Designing a stable PLL is not really a big challenge, with all the simulation tools available, and after you have mastered some basic experiments with the 4046 chip, or similar circuits. For PLL simulation software, I suggest to look at ADIsimPLL, available free of charge, from Analog Devices.
However, stable doesn’t necessarily mean wideband, and exhibiting similar characteristics over a full 2 to 18 GHz band. That’s what we want to achieve here.

First some targets – after reviewing the circuits of the Micro-Tel SG-811/1295, and looking at the stability of the build-in YIGs, I figured that a good PLL bandwidth for this system would be somewhere in the 200-500 Hz region. This would still allow to correct for some mains-induced frequency fluctuations (50/60 Hz), and the frequencies are well below the 25 kHz phase detector frequency used for the ADF41020. Furthermore, the bandwidth should be reasonably stable of the full range of frequencies, with no need to use multiple loop filters, or troublesome switchable capacitors/variable gain amplifiers – all should be operated from a single-ended 15V power supply, to provide 0-10 V for the Micro-Tel 1295, and 0-3 V for the SG-811, from a single little board.

With this in mind, an OPA284 rail-to-rail precision amplifier (low noise, 4 MHz BW, can drive +-6.5 mA) was selected as the active part, and some capacitors (only use good quality capacitors, polymer dielectric, or stable ceramic capacitors, NPO) and resistors put together. There is only one adjustment, the damping resistor in the feedback loop.

Sketch of the schematic
adf41020 sg-811 pll loop filter

How to figure out the loop characteristics? Many pages have been written about this, determining open-loop gains and phase margins, etc., but how to approach this in practice, one you have done the calculations and figured out a setup that basically works? This is where the extra resistor and the two test points (A, B, see schematic) come into play. The resistor close to the output (8k2, this is just a temporary part, only inserted during test – bridged with a piece of view during normal operation) is used to isolate the loop output, from the SG-811 phase lock input (which is nothing else than a heavy VCO=voltage controlled oscillator). A few extra parts are also connected to feed a test signal to the VCO, in addition to the loop filter output voltage.
This test port is intended to disturb the PLL just a bit, without causing loss of phase lock, and measure the response. Such work is best done with a dynamic signal analyzer – I’m using a HPAK 3562a, not because it is the latest model, but because that’s what I have around here in my temporary workshop. It had the old CRT replaced by a nice color LCD screen, and it features a very acceptable noise floor, and gain/phases analysis.

The test setup (please excuse the mess, not too much empty bench space around here)
pll loop test - micro-tel sg-811 - adf41020

Now we just need to work through various frequencies and settings, to better understand the characteristics of the system.
To cover all the YIGs and bands of the SG-811 (which might have unknown variations in tuning sensitivity, noise, etc.), frequencies around 2, 6, 10, 12.5 and 17.5 GHz were chosen for the test (exact values can be found in the worksheet, better not to use even values, e.g., 2.0000 GHz, but to exercise the divider circuits – to see if there are any spurs).

At each frequency, magnitude and phase response was collected, examples:
Gain (disregard the unstable response below 10 Hz, just an artifact)
mag_cp0

Phase
phase_cp0

The interesting point is the 0 dB crossing of the gain trace – the unity gain bandwidth. This is determined for each test condition, and then the corresponding phase is obtained from the phase plot. In this example, BW_0dB is about 380 Hz, with about 20 degrees phase. Why is it so important? Simply because we need to keep this phase gap (of the A and B signals) well above 0 degrees, otherwise, the loop will become unstable-oscillate-massive phase noise of the generator will result.

Some call this the phase margin, so do I, although the whole discussion about gain and phase margins is typically centered around open-loop system, whereas we are dealing with a closed loop here. Fair enough.

Now, after some measurements, and number crunching, the results:

Phase vs. BW, at various frequencies
pm vs bw sg-811 pll
-you can see, the phase margin is virtually independent of frequency, and purely a function of bandwidth. So we can limit all further discussion to bandwidth, and don’t need to worry about phase margin separately. It is also clear from this diagram that we should better stay in the 250-300 Hz bandwidth region, for the given filter, to keep the phase margin above 25 degrees, which is a reasonable value.

Now, how to keep the bandwidth stable with all the frequencies and YIGs/SG-811 bands and sensitivities changing? Fortunately, the ADF41020 has a nice build-in function: the charge pump current can be set in 8 steps (0 to 7), from 0.625 to 5 mA (for a 5k1 reference resistor) – and setting the charge pump current (Icp) is not much else than changing the gain of the loop filter. The gain, in turn, will change the 0 dB bandwidth in a fairly linear fashion. Note: typically, the adjustable charge pump current is used to improve locking speed – at wider bandwidth, and mainly, for fixed-frequency applications – but is is also a very useful feature to keep bandwidth stable, for PLL circuits that need to cover a wide range of frequencies, like in the case of the SG-811.

The next result – bandwidth vs. Icp setpoint
sg-811 pll bw vs charge pump current at various frequencies
-looking at this diagram, the bandwidth is not only a function of Icp, but also a function of frequency. For the larger frequencies, the bandwidth is much lower. Some calculations, and it turns out that the product of bandwidth, multiplied with frequency to the power of 0.7 (a bit more than the squareroot) is a good parameter that gives an almost linear vs. Icp (see worksheet, if interested).
adf41020 pll bw phase margin

After all the measurements, things are now pretty clear – if we set the Icp current right, BW can be kept stable, over almost the full range, without any extra parts and switches, and about 300 Hz seems to be a reasonable compromise of PLL speed and stability.

Estimated PLL bandwidth (0 dB), using the Icp current adjustment of the ADF41020
bw vs frq with charge pump current adjustment
At the lowest frequencies (2 GHz range), the BW is found a bit larger than desired, but still, the loop still has 20 degrees margin.

Well, with all the phase margins and uncertainties, is the loop really stable enough? To check this out, what is typically done is to first try a few odd frequencies, at the start, end and in the middle of each band and monitor the VCO control voltage with a scope, for any oscillations or otherwise strange behavior. Then try a few small frequency steps, and see how the loop settles. This all went without any issues.

Still, to be sure, especially close to 2 GHz (increased bandwidth), a test was performed by injecting a 100 mV (nominal) squarewave, 10 Hz, via the test port mentioned above. The loop output spectra showed that this worked, and that the 10 Hz contribution is significant, while still not swamping everything else and driving the loop out of lock right away.

Power spectra with test signal on (upper diagram), and off (lower diagram).
pll power spectra

There are some 60 Hz/harmonic 60 Hz spurs, mainly due to coupling of 60 Hz to the coarse tune line, which is just a plain coax cable that doesn’t provide any good shielding vs. 60 Hz (or 50 Hz, in Europe) interference.

Needless to say, the PLL will not stop working right away when the phase hits 0 deg at the 0 dB point (see above, phase margin vs. bandwidth plot – even at negative phase, measurement was still possible – as long as the amplitude of the test signal is kept small).
There will be signs of instability, and this is what this test reveals. So the frequency was set again to 2.2221 GHz, and the charge pump current Icp increase step by step, from 0 to 5. At 6 and 7, no phase lock could be achieve – fully unstable loop.

Step response (AC component only, square wave, 10 Hz at nominal 100 mV, supplied to test port)
pll step response 2.2221 ghz 100 mV
Icp=0 – this is the most stable condition, phase margin is about 20 degrees. Already at Icp=1, phase margin of about 3 degrees, stability is much compromised/considerably more noise, not only for the step response, but also during the steady portions. At Icp=2 and above, phase margin is negative, still, phase lock is robust (will not re-lock, once lock is lost), and the pulse response suggests to stay away from such regions.

Micro-Tel SG-811 PLL – phase lock achieved!

Thanks to a rainy late afternoon (and evening), some success with getting the SG-811 signal generator phase locked. For external frequency control, the SG-811 needs a coarse tune voltage, to adjust the frequency to within a few MHz of the target. This is done using a DAC8830(=MAX541) 16 bit DAC and OP284 opamp to scale the 0 to 2.5 V of the DAC to 0 to 10 V required for the coarse tune input of the SG-811.

The SG-811 is run at a level of +5 dBm, and a directional coupler is used to get a sample of this signal (about -5 dBm) into a ADF41020 single chip PLL. The remainder of the signal is fed into a EIP 454A microwave counter, which also provides a 10 MHz reference for the PLL.

First, it turned out that the SG-811 uses a different voltage range (-3 to 3 V) for the phase lock input, compared to the Micro-Tel 1295 (0 to 10 V). So the 8904A was used to determine the phase lock input sensitivity (deviation in MHz per Volt). Some existing AVR code (the whole setup is controlled by an ATMega32L) was modified to fit the SG-811 requirements. This code has some nice features, including a self-adjusting coarse tune voltage. This is of great help because the phase lock input of the SG-811 only allows for a few MHz frequency shift, and during warm-up the generator can easily drift out of the lock window, if the coarse tune value is left unadjusted. Obviously, the coarse tune voltage is changed in very small steps, 1 LSB at a time.
Drop me a line if you are interested in more details.

The (temporary) test setup, set to an arbitrary value of 4.5500 GHz.
20140831_223034o

The control circuitry
20140831_223151o
Display shows (second line): Divider values of the PLL, DAC coarse tune value (0 to 65535), band, and phase control voltage (deviation from mid-point in mV, +-100 mV are perfectly fine, if +-50 mV are reached with drift correction activated, the DAC coarse tune will be automatically adjusted to get the phase control voltage back to less than +-10 mV).

Last but not least, also the shift register board, 3x LS164 (for remotely controlling the band switches) has been connected to the AVR micro, and all is functional.

The Microwave PLLs: stabilizing the YIGs

The Micro-Tel SG-811 and 1295 are great units, however, they lack PLL control. Even at their time, in the late 70s, early 80s, government labs required PLL control – and Micro-Tel offered PLL controlled frequency stabilizers for these units. Stabilizers that are now virtually impossible to source (if you have two spare Micro-Tel FS1000, please let me know!).

So I decided to build some very broadband PLL circuits that can handle 2 to 18 GHz, at reasonable frequency resolution. 10 kHz, or 100 kHz resolution seems to be perfectly adequate; mostly, the attenuator calibrator will be used in 2 GHz steps anyway.

Both units have two inputs:

(1) A frequency control input – a voltage controlled input, 0 to 10 V, that sets the frequency roughly, within the given band. Bands are: 2-4, 4-8, 8-12, 12-18 GHz. There is some thermal drift, but preliminary test shows that a 16 bit DAC would be most suitable for this kind of “coarse” frequency control.

(2) A phase lock input. This has a sensitivity of a few MHz per Volt. 0 to 10 V input, for the 1295 – and -3 to 3 V for the SG-811, as it turns out. Accordingly, with the coarse control set to the right value, the phase lock voltage should be somewhere around 3-7 Volts, for the 1295, and close to 0 V for the SG-811.

Now, the tricky part, how to get a phase comparator running, for the 2-18 GHz range? Traditionally, this requires a broadband harmonic generator, locking to a certain harmonic, and so on. All possible, has been done before, but a lot of work to get it working.

There comes the rescue, from Analog Devices: a truely remarkable little thing called ADF41020. It is a full 18 GHz PLL circuit, works with more or less any reference (10 MHz will be used here), and has pretty high input sensitivity, all that is needed are about -10 dBm to drive it over the full band.

After some tricky soldering, in dead-bug style, and some auxilliary circuitry, with 16 bit DAC, reference voltage supply, very clean and stable supplies for the PLL, all the typical loop filters (0.5 KHz bandwidth) – and an ATMega32L – this is the current setup, for the 1295. Believe me, it is working just fine, and even has an auto-track feature, to keep the phase lock voltage mid-range – so it won’t un-lock with drift.

20140825_131843

Upper left hand corner: ADF41020
Lower left hand corner: PLL loop filter
Center: Low noise voltage regulators, reference and DAC
Other parts: ATMega32L board (16 MHz, USB interface), LCD display (just for troubleshooting)

ADS-B @Westfield

Well, for some years, I have been receiving ADS-B signals back home in Germany, using a small J-dipole antenna, tuned to 1090 MHz. The receiver – a modified SAT tuner, with TDA8012 Demodulator and TSA5055 PLL.
Now – close to three major airports (EWR, JFK, LGA), it’s time to get things started here…. at my new home.