Category Archives: Generators – High Frequency

HPAK (HP Agilent Keysight) 8662A Synthesized Signal Generator: ref sum loop adjustment, output amp/peak detector repair

Introduced in about 1980, the 8662A is a marvelous machine, it is an ultra-clean signal source, with very low close-in noise. This is the kind of oscillator used as a reference for phase noise tests, narrow channel receiver testing, and so on. Just a quick glance at it inner working, and it is clear that only the most brilliant engineers must have been working on this apparatus in those days. Sure enough, this did not come cheap, about 30 k$ in 1981, something like 75+ k$ nowadays…

Even more interesting, these machines are still in use today, and are still valued for the same reason – hardly any synthesized generator exists that has similar close-in noise.

The block diagram – essentially, there are two ultra low noise switched inductor osciallators that form the reference and output sum loops, together with with some fractional and n divider circuitry, to allow for the fine resolution. The output sections has a heterodyne band, and other bands derived by doubling or dividing the 320-640 MHz fundamental output of the output sum loop oscillator.
8662a block diagram

As with all wonders and complex machine, they sometimes stop working. This one had two issues reported, inaccurate output power (and error #10B – ALC error for some frequencies/settings), and a ref sum loop unlock condition at certain frequencies. The latter issue had been persisting for some time, but the ownder didn’t use it at the critical frequencies, the ALC loop error just recently seems to have come up, for now external reasons, apparently, during a measurement.

(1) The output sum loop A6A5, error #06. This turned out to be a drift issue, of the low noise REF oscillator. This had drifted out of pretune span, and needed just very slight adjustment of the tuning screw (under a heavy metal cover, rear panel of the instrument). Such adjustment is not mentioned in the manual, but easy enough, set the generator to 640 MHz, check that the pretune is properly adjusted (adjustment is done for -3.75 V at 320 MHz), introduce a -34 V tuning voltage signal, and adjust for a frequency a bit above 640 MHz, say, 642.5 MHz, to give the phase loop a bit of room to operate.

08662-60417 oscillator

Great care must be exercised, because the adjustment uses a copper (!) screw – red frame in the above picture, most likely, acting as a capacitor vs. a metal surface inside of the unit (don’t open up these oscillators – they are wraped in Mu metal or similar exotic material). Don’t overtighten the retaining nut, copper is pretty soft.

After that, the ref loop is stable again, even when sweeping through the full band, for some hours.

(2) The more tricky part, as it turns out, the ALC loop. This is implemented on assemblies A4A1 (which has the peak detector), and A4A7, the ALC control, this has a DAC, to set the target voltage, and a regulator, to keep the output signal at the level set by the DAC output.
8662a a4a7 probing
After some time of probing around, and substituting the input of the A4A1 assembly by a calibrated 100 MHz signal, it is clear that the A4A1 peak detector delivers insufficient voltage, and that the voltage is frequency dependent.

A quick glance at the schematic:

8662a output amp

Blue frame – the bandwidth limiting circuit, enganged at below 10 MHz – first guess: something is at fault, in this circuit. Well, unfortunately,after even more probing, and even swapping some transistor (they tested good but you never know) – the focus shifted to the part in the red box. The peak detector diode! This is really bad news, because it is part of the output amp microcircuit, part number 08662-67008. Carefully desoldered, and checked – the detector diode has 0.3 V forward, which is fine, and 0.7 V backwards – this is a far too low reverse breakdown voltage. Something must have happened with this diode, maybe, it is just age. So, I openend up the circuit (the lid can be lifted off with a knife, glued on with silver epoxy), and inspected with a microscope – no obvious defect, all kind of nicely wire-bonded parts on sapphire(?) substrate – nothing I can fix with the tools at hand.

08662-67008

But, as luck comes along, found two of these circuits on ebay. Very mysterious. They look like old and used and ripped out of the boards (with a screwdriver, not by desoldering), and I suspected that the two might just be damaged parts – but 14 days right of return were offered, so not an issue. Even then, it doesn’t really make sense to rip the out of the board, every reasonably skilled and knowledgeable person would rather desolder them carefully, and fit a spare. However, these spare still had the through hold plated vias on the connectors, from the board. Glad the feed-throughs at the bottom of these microcircuits are so sturdy! Well, the only explanation I have – someone saw the golden parts, on some odd circuit boards, and only wanted to keep the gold, but not the boards. Fair enough.

And, this is almost the end of the story, the spares arrived within a few days, and I cleaned them up, and fitted the most “used” looking 08662-67008, and, quite to my surprise – working just fine.

The only thing that remained was the amp bias adjustment, the offset adjustement (both on A4A1) and the CW power adjustment (A4A7) – also checked the other alignments of A4A7, but they were all still fine.

In the end, still one output amp in the box, for the next 8662A, and the current one, back alive.

8645A Agile Signal Generator: when disaster strikes

For a long time I have been looking for a reasonably prices 8645A, and finally, I found one – with the note “doesn’t power up”. Well, most likely, a defective power supply. The 8645A and some related generators (not the 8643A) use linear supplies, because these are really low noise devices, and a switching supply just doesn’t seem to do the trick. Interesting, because for the very quiet 8662A/8663A signal generators, HP was relaying on switches supplies…. maybe they just could not fit anything else.

Back to the 8645A – this is no less than a miracle, a marvelous apparatus. No idea how many manhours (man-decades) of engineering went into it. It’s complexity, and subtle detail, nothing short of a moon landing vehicle, made for an electronic test lab. They way HP designed the shielding, and implemented a rigorous low leakage approach, this alone is worth special admiration.

Even better, the unit discussed here has option 1, which is an OCXO high stability reference, and it has a build-in doubler, extending the frequency range to above 2 GHz. About USD $50k in 1990, nowadays, nobody can afford such build quality anymore.

Well, all these are good reasons for looking forward to soon doing some repairs on such kind of unit, and make it “power up again”. Well, that was the thought.

This issue: while many hours of hard work went into fabricating this thing, not more than a few seconds were spent, to consider adequate packaging, to ship a box, 80 pounds.

8645a damage

8645a damage 2

8645a damage 3

8643a damage 4

Such kind of damage, not seen before. Except for the little bit of Instapak, no other protecting foam or anything – nothing to hold it in place in the box. The result – a badly damaged front panel, broken input connector, and even the front frame, damaged beyond repair.
Just the single front end connector (which has an internal airline, gold plated) – USD 200+; the machine, it seems beyond repair.

The only good news – the seller (who did not package it himself) seems to be a very resonable person, so we will work something out. To be continued.

HPAK (HP Agilent now Keysight) 8782B Vector Signal Generator: an easy fix

The 8782B is a quite powerful generator to simulate digital signals, not considering the power in dBm, but the support of all the common digital modulation schemes, BPSK, QPSK, 8PSK, 16/64/256 QAM, at exeptional signal integrity.
Frequency range is 0 to 250 MHz, actually, it works to 370 MHz – but this instrument is mainly intended to generate complex IF signals, which can then be used to test the IF chain of a receiver, or, you just add a mixer, another generator for the LO, and a filter, if needed, to get the signal up into the GHz region.

This unit arrived in a HUGE box, it just fits the car!

All frequencies are derived from a HP 10811E ovenized oscillator, which is held by a shock-absorbing mount, and is extremely stable (better than 0.5 ppb per day!), and low phase noise, resulting in below -125 dBc at 1 kHz from the carrier, and below -130 dBc further out.

The symptoms:

(1) The right LCD display is missing partial digits. Seems to be related to the mounting/contact of the LCD with the board.
8782b display defect

(2) Output is 30 dB down, but otherwise working just fine.
Quick look at the output amplifier – a real marvel of RF engineering.
8782b a10a2 output amp assy

(3) It’s in good condition, but will benefit from a bit of de-dusting and cleaning.

The repair:

(1) After taking off the front panel, the LCD is a separate assembly, seems to be made by HP (which test equipment company would nowadays still make their own LCD displays?), and easy to remove. And, the defect, readily found. One of the side bars holding the assembly together and pressing the glass display to the control board, to make contact via an elastic strip, it had slipped off. The root cause – somebody must have used nail clippers to fabricate a piece of acrylic that is used to protect the LCD surface – maybe it was broken or scratched. And with the uneven edges, it caused tension on the display unit, pushing off the side bar.
8782b display protector
Well, Let’s just straighten out things and put it back together. No surprise, the LCD is working again just great.

(2) The level control. According to the description of the sender, the output is about 30 dB down. Most likely, something with the attenuator, 08780-60093 = 33322GC, 110 dB, 10 dB step. So, the attenuator, easily removed, and the non-attenuated signal directly fed to the dated but very trustworthy HPAK 8565A spectrum analyzer available here at the bench. Now there is plenty of signal, but it isn’t accuarate at all, even relative steps, like 1 dB steps, give variable response, anything from 0.5 to 2 dB steps… The level spec of the 8782B isn’t all that great, but I know from earlier work with such units, the performance is much better than spec, and 1 dB step, should be 1 dB. Turns out, just a little pitfall, the 8782B has a calibration routine, also for the level, and somehow, this unit seems not to have been calibrated for a while. Well, easy enough, just pushed the “CAL” button, and after a few minutes, you bet, the levels are spot-on, and, within 0.1 dB or so.
Just a quick fix on the attenuator control circuit, and, the level is back.

(3) For cleaning, don’t use anything too harsh on these instruments, they use different plastics and pains compared to earlier HP models. I get good results with about 20-25% isopropylic alcohol (1 part of the alcohol, 3 parts of distilled water).

Some quick tests – all self tests passed OK – and here, a BPSK signal:

8782b bpsk test

Level accuracy, all well within spec (measured with a Micro-Tel 1295):
8782b level accuracy test

And, with the 8782B the boring times in the lab are over, Thank’s to the build-in game – everyone will be looking at you, working hard, pushing the buttons!
8782b special function 600 game

Leveler calibration PROM, now: EPROM

Fortunately, the manual of the Wavetek has some detail on the leveler correction PROM. Essentially, it is fed with 8 bits representing the frequency, 255 (0xff) for 7.0 GHz, 0 (0x00) for 12.4 GHz. For each of the 256 steps, it has a correction byte stored in a Texas Instruments TBP28L22N 256×8 PROM. This is programmed at the factory, to match each individual RF deck.

20140827_075737p

Getting this exact device and programming tools ready was out of question, some of these PROMS might still around, with datecodes of the 80s, but really not worth the effort and cost.

Step-by-step

Step (1) – A little test rig was set up, with the recently repaired HPAK 8904A as a DC source (can source -10 to +10 Volts, in very fine steps), and the DC voltage connected to the leveler correction control voltage line. The Wavetek is designed for servicability, and there is a nice jumper to disengage the actual level correction DAC, and the feed an external voltage instead. An EIP 545A was used as a frequency counter and power meter. Cable and EIP 545A power meter accuracy was tested with my best calibrated source at hand, and found to be within +-0.5 dB over the 7 to 12.4 GHz band.

Step (2) – Data were collected by setting the Wavetek to various frequencies, mostly in 0.5 GHz steps, and the control voltage was adjusted for the power meter to read about 0 dBm. The data were then used to calculate the coefficients of a forth degree polynomial, and converted to the 256×8 bit format. The Wavetek uses a DAC0800LCN DAC, and the output voltage (after the on-board opamp, a LM307N) was found to be very close to 10.00 V with 0xff input, and nearly -10.00 V, for 0x00.

wavetek 907 cal
wavetekcorr

Step (3) – The tricky part. How to get a replacement for the 28L22 PROM? There are mainly two choices, one option would be to use a little microcontroller, that can easily function as a pseudo-memory, or use something more permanent, in this case, an EPROM. I had some 2532 around, therefore, not much effort. Only a small fraction of the 2532 will be used, 2 kbit of a total of 32 kbit. What a waste!
Unfortunately, the 2532 isn’t close in size to the 28L22, nor are the pins arranged in a similar fashion – but this can be solved with a little adapter board, and a few wires. Not the most beautiful solution, but who cares, it works!

20140827_075707

Leveler – Missing part!

As it turns out, somebody must have opened up the Wavetek 907A before, and it is missing a crucial part – the detector, for the leveling circuit! Checked out with the manual – there used to be a 6 dB pad (to get better SWR for the detector), and a positive-type tunnel diode detector (SMA input, SMA output). Nothing I have around here surplus.

20140825_130103p

Wait – there is a spare HP Schottky negative-type detector around in a drawer back home in Germany, and coincidence allowed to have it carried over to the US. This litte device as SMA input, SMC output, and with a little SMC to SMA adapter, at least a mechanical fit.

A little mod will is required to get this going, changing the polarity of the input amplifier. No big deal:

20140827_075831

Next step – there are correction coefficients stored in the Wavetek (in ROM), to compensate for signal losses along the RF chain, and to keep the output calibrated. This will require some more thought, to be continued.

The Wavetek 907A – initial assessment

A Wavetek 907A – this apparatus generates microwaves from about 7 to 12.4 GHz. All the typical modulation capabilities are provided, FM, AM, pulse. Found it on xbay, USD 45. That’s less than the value of the two precision bulkhead SMA to N connectors.

Quick look inside:

20140825_130111

RF unit:

20140825_130103

You can see the YIG oscillator on the top, followed by an isolator, leveler, isolator, two attenuators, isolator. There is a side chain, starting at the leveler, and with an additional isolator: this is a non-attenuated reference signal, which is available as an auxilliary output at the front panel – quite handy to use as as a signal for PLL stabilization, or other purposes.

Some items that need attention:

(1) Power LCD display doesn’t work properly, not showing the power reading

(2) Attenuator works, but leveler doesn’t seem to work (always at maximum, unleveled power)

(3) Only have a manual with partial, cut off schematics!

(4) Some TLC required, de-dusting – done.

(5) Two pushbuttons are missing, but switches work – more a cosmetic issue, will replace, once everything else has been fixed

(6) Some switches don’t work properly – fixed with the help of DeoxIT D5.