Category Archives: Various

Ultrasonic Pest Chaser: scare way all the rats, squirrels and other furry creatures….

Winter approaching, all the pests of the world would like to hibernate in my attic. And around the house, an increasing number of squirrels is feeding off the birds’ food. But hold, for every problem, there is an electronic apparatus that can solve it, it this case: an ultrasonic pest chaser.

First of all, we need a random ultrasound signal generator. Tests have shown that frequencies in the 18 to 30 kHz range are best, and that not all animals respond to the same frequencies. So we need a cover-all solution. Furthermore, animals will get used to certain noises, even 105 dB ultrasonic noise. So we need to build-in some surprises. Sometimes, the machine will be quiet, then it will come up with all kinds of nasty sounds. Sure enough, at high level.
This is achieved by a little microprocessor, an AVR ATmega8, but you can use any micro of your choice. Please check out the source code – the sounds are generated by using certain pre-set sequences of breaks, durations and sound frequencies, and these are rotated in a repeated (but very long) pattern. The pattern won’t repeat to soon, because prime numbers have been chosen for the lengths of the sequences, thus, they appear almost random for the listener (only those with ears able to receive high frequency noises like this).
There is also a LED indicator signaling the ON state of the ultrasound. Even if you can’t hear it, please stay away from the speakers – these >100 dB may damage your hearing without any prior notice. Keep children away. As always, this post is for your education only, don’t try it at your home!!

marder sig gen schematic

The signal generator schematic is as simple as it gets – frequency is derived from a 4 MHz crystal, via TIMER1 of an ATmega8. Some auxiliary circuitry is used to derive a 5 VDC rail from the supply voltage (anywhere from 10 to 30 V, depending on the speaker).

marder power driver schematic

The power driver uses two NPN transistor and a MOSFET to provide sufficient current for the speaker. The speaker, some are under test, more about them later. Piezo high frequency speakers are the speaker of choice for this application.

marder signal gen board

Some pictures of the boards – all build on plated-through FR4 perf board, this will last a long time even when use outside.

marder driver board

A test, using a 10 Ohm load resistor, and a 40 kHz drive signal. The MOSFET is switching nice and fast, no issues. For the speaker, it might help to couple the (capacitive) piezo with a suitable inductance, and to add a DC decoupling capacitor (about 1 µF, pulse resistant type). You can see that the resistance of the MOSFET in ON state is about 1 Ohm, current is about 1 Amp, for a 12 VDC supply voltage – and 0 V is one graticule up from the bottom of the scope.

marder 40 khz test 2 v ydiv

Finally, a test of the circuit, frequency (Hz) vs. time (seconds). This nicely shows the “random” nature of the noise, with breaks of various lengths in between noise bursts. Poor squirrel, poor rat – but they have a choice: keep out of harm’s way, and out of the attic!

marder signal test

This is the microprocessor code, avrgcc.

marder1_151130

Compact Fluorescent Lamp (CFL) TP120-13MSL, 13 Watt: some circuit analysis

Quite honestly, I don’t like these compact fluorescent lamps (CFLs) too much. They save energy, maybe, but the light produced is not really appealing, and in the long winters here, some extra heat produced by an ordinary light bulb is much appreciated anyway.

cfl lamp t120

Having a few defective CFLs around, I could not resist to open one up and check inside. That’s the schematic.

cfl compact fluorescent lamp schematic

More can be found at other sites, this is quite comprehensive: CFL Schematics (LabKit).

cfl circuit

The circuit uses a rather small ring core transformer, two primaries, for feedback, 3 turns each, and a secondary, 9 turns. Two transistors MJE 13003 (in TO-92 package) are arranged to form an oscillator circuit. These transistors can handle 600-700 V no problem. The DIAC (BA3) forms the starter circuit, giving a first few pulses to the oscillator, when the lamp is still high-impendance (prior to ignition). Once the lamp has started, the D5 diode will disengage the start-up circuit.

The transformer:

cfl transformer t1

Below, wrapped in blue tape, and with an E-E ferrite core, that’s the choke, about 1.6 mH inductance, which is part of the lamp’s resonant tank (along with C3, C5, and the secondary transformer – and C7, which will play a minor role, because of its comparatively large value).

cfl coil l1

HP 8481A Power Sensor: why are they all blown?

A remarkable HP product, the HP8481A sensor. It appeared on the market about 1974, and still today, these devices are very much thought after. It works from about 10 MHz to 18 GHz, -30 to +20 dBm.

Quite some detail about this sensor can be found in the HP Journal, 1974-09 edition (pages 19ff).
There is says that the sensor can withstand 300 mW power, and even 0.5 Watts for seveal days. Still, there are many sensors around that are blown – why do so many people connect them to 0.5+ W transmitters and destroy them along the way? I have no idea!

Here, a quick glance at the internals:

8481a view

8481a thermocouple chip

8481a thermocouple cross section

8481a schematic hp

8481a schematic

8481a exploded view

8481a power sensor

8481a shield

8481a open

8481a internal

8481a ferrites

8481a connector

8481a sensing element

Note the capacity values – measures: 3.5 nF at the input, 3.0 nF at the output. This is all real gold on sapphire substrate!

8481a capacitor values

TMS 2532 EPROM adapter: one byte every 50 ms…..

EPROM progammers seem like a thing of the past, still, they are very popular for test equipment repair, arcade games, and all kinds of other occasions where small amounts of data need to be stored in a bulky, fancy package.
Such programmers, mostly copies of the “Willem” design, are widely available, Made in China, and generally, these work pretty well. Well, as luck would have it, most of the ancient pieces of equipment use 2532 EPROMs, and just this kind is not supported by the common programmers, which support the 2732….. same capacity, different pin layout.

2732 pinout

tms2532-45

tms2532jl-45

To adapt the 2532/2532A (these only differ by their programming voltage, 25 V vs. 21 V – make sure the set it correctly) to the common 2732 programmers, the only thing you need is a small adapter, with a most complicated schematic (the only pins that change are 18, 20 and 21). Most of these EPROMs require programming pulse widths of about 50 ms, but often program OK with just 10 ms, or less.

2532 eprom adapter for programming schematic

2532 programming adapter view 2

2532 programming adapter view 1

BNC 50 Ohm Termination: a rather surprising construction

Doing some precise level measurement on 50 Ohm system, I came across this termination, Model 24931 28P296-1.

termination 1

It’s resistance, not quite 50 Ohms, but 51.1 Ohm… not that the DC resistance is the most important characteristics of a 50 Ohm termination, but nevertheless, a reason to check it.

This termination is constructed using a BNC connector, so I expected some kind of thin film resistor inside, maybe damaged by overload or age, leading to the incorrect resistance.

Opening it up, this it what I found:

termination rn55d 51r1 resistor

termination

The resistive element, a Vishay Dale R55D metal film resistor:
vishay rn55 resistor

And, in fact, it is a 51.1 Ohm, +-100 ppm/K tempco resistor. 0.1 Watts so it is running close to its limit already at 20 dBm! Don’t have the right tools here to measure ‘low frequency’ (< 2 GHz) SWR... but will check back home at the main workshop one time in the future, just for curiosity.

ADCMP580 Ultrafast Comparator: it’s really fast!!

Some experiments with a tiny part that has remarkable qualities: the Analog Devices ADCMP580. It is a comparator, and a very fast one indeed, based on a SiGe semiconductor.

adcmp580 features

Its features are true extraordinary – everything specified in GHz and picoseconds.
Well, can this be made work without a lot of money invested in a special HF or microwave board? Yes, it can. You just have to keep the wires short:

adcmp580 board

This test board was constructed by first soldering thin wires to the chip, and then mounting it on a small piece of perf board, with some epoxy glue. The output is wires, within less than 2 mm, to a (50 Ohm) SMA connector.

adcmp580 schematic

Measuring the performance characteristics is not an easy task. I used a 54750a sampling scope, with a 54751a 20 GHz bandwidth plug-in.

The comparator is fed by a 8642b signal generator, which is also used to trigger the 54751a plug-in.

At the output, a 13.5 dB attenuator is used, at least for some of the tests, to get best output SWR (to avoid issues caused by reflected signals). However, as it turns out, the 54751a has quite reasonable input SWR, and the connecters are better than it first seemed. So the attenuator can be left out. Still good to have some attenuators at the 54751a input, remember, this can only handle +-2 V, and no ESD!

adcmp 500 mhz square

adcmp 2 ghz square

In these tests, “squaring up” a 500 MHz and 2 GHz (!) signal. Rise and fall time are about 50 ps, not bad at all for the simple construction.

adcmp fft

FFT shows bandwith to 10 GHz and up.

Output power is also quite useful, 400 mV Vpp.

Rong Hua (Bianhuan) “50 Watt” Travel Adapter: not enough iron, for this “wattage”

In interesting find, Made in China, a 50 Watt travel adapter.

autotrans sc-20c a

autotrans sc-21c

autotrans sc-21c receptacle

autotrans plug

This is used to convert 220 V (despite the US plug!) to 110 V – same device also seems to exist for conversion from 110 to 220 V.

The build quality is exactly what you expect for less than USD 7. A crude plastic case, two screws, no protection circuits or fuses, and a rather small transformer.

autotrans inside

Total weight of the transformer – about 140 g.

Looking at some transformer tables, this is about 6-10 VA (=”Watt”, if you wish) nominal size. For autotransformers like this, the nominal size needs to be converted to the actual power rating, by using the conversion ratio (voltage ratio). P_nominal=P_actual*(1-voltageratio). I.e., for a 220 to 110 Volts transformer, the ratio is 0.5, and a 10 VA nominal transformer can handle 20 VA if configured as an autotransformer.

Quite obviously, 20 VA is not 50 VA – please use these these transformers with great caution, and only for really small appliances. Never leave it plugged in unattended, it might catch fire any time if overloaded, or if it fails!

Resistive Power Splitter: trying out a low-cost construction

For leveling of signals, or test that require two tracking channels, like tracking insertion loss measurements, a resistive two-element divider is very handy. These are broad-band, and rather robust devices.

One input, two resistors (50 Ohms each), in series with two outputs.

Such devices are available from various suppliers, and cost anywhere from 25 to 300 USD, depending on level of precision and frequency range.

Why not try to build one yourself, with some small 0603 resistors; I used China-made SMA connectors, and 4 pcs of 100 Ohm resistors.

splitter

How does it perform? Well, let’s connect to it a network analyzer and try:

splitter test

Port A through measurement (port B terminated):
thru port a

Port B through measurement (port A terminated):
thru port b

Tracking is pretty good, 0.05 dB @2 GHz, 0.15dB @2 GHz.

ret loss

swr

1.2 input SWR – well, pretty acceptable; might still be able to improve by adding some solder or by changing the length of the pin. Good enough.

Here, some specs of a HP resistive splitter:

hp11667a

Oscillator Driver/PLL: tuning fork oscillator

Recently, a “very special” circuit had to be designed – a driver for a mechanical oscillator. The objective – to find the natural frequency of such oscillators, to a very high degree of precision, and at very small amplitudes, in the µm range.
Measurement of the frequency is easily done by a frequency counter – what is needed is a circuit that keeps the oscillator going at a constant amplitude.

The oscillator (a mechanical tuning fork, metal tube) carries a small magnet that can be used, together with a stationary coil, to make is oscillate and sustain the oscillation.
The movement of the tuning fork is sensed by a light gate – an IR emitter diode, and a photodiode.

The oscillator is running at a few 100 Hz, in a very well thermostated environment.

First part, the photodiode amplifier, and signal conditioning circuits.
osc pickup and amp

The second part, the PLL (a classic 4046), and some auxiliary circuitry to provide monitor outputs.
osc pll-vco
For operation at other frequencies – adjust the VCO timing capacitor, or use an external VCO.

The coil driver – and monitor driver, this is a very low power systems, a few milliamps are plenty for the coil.
osc coil driver

Tesla/Voltcraft BK127C Power Supply: a trusty fellow

One of the first pieces of electronic equipment I have ever owned, maybe the very first, a 0-20 V power supply, 1 A max. current. Made for Voltcraft (brand of the “Conrad” electronic mail-order company, popular in Germany), by Tesla, “Czechoslovakia”.

In the mean time, I have 3 of these, and despite the “1 Amp” limit, these are very useful supplies, and there are hardly any circuits that need more than 1 Amp. The output is reasonably low-noise – very similar to other DC supplies or power packs.

bk127c

Build quality is very sturdy, folded steel – and a basic but very reliable circuit, designed around a uA723.

bk127c schematic

Years ago, I had one of the supplies fail on me, when powering a high voltage circuit – this caused the power transistor, a KD606, to fail. Replaced it with a BD317 – working perfectly fine.

The manual – sorry, in German only.
tesla bk127c pwr supply