Category Archives: Various

HP 8481A Power Sensor: why are they all blown?

A remarkable HP product, the HP8481A sensor. It appeared on the market about 1974, and still today, these devices are very much thought after. It works from about 10 MHz to 18 GHz, -30 to +20 dBm.

Quite some detail about this sensor can be found in the HP Journal, 1974-09 edition (pages 19ff).
There is says that the sensor can withstand 300 mW power, and even 0.5 Watts for seveal days. Still, there are many sensors around that are blown – why do so many people connect them to 0.5+ W transmitters and destroy them along the way? I have no idea!

Here, a quick glance at the internals:

8481a view

8481a thermocouple chip

8481a thermocouple cross section

8481a schematic hp

8481a schematic

8481a exploded view

8481a power sensor

8481a shield

8481a open

8481a internal

8481a ferrites

8481a connector

8481a sensing element

Note the capacity values – measures: 3.5 nF at the input, 3.0 nF at the output. This is all real gold on sapphire substrate!

8481a capacitor values

TMS 2532 EPROM adapter: one byte every 50 ms…..

EPROM progammers seem like a thing of the past, still, they are very popular for test equipment repair, arcade games, and all kinds of other occasions where small amounts of data need to be stored in a bulky, fancy package.
Such programmers, mostly copies of the “Willem” design, are widely available, Made in China, and generally, these work pretty well. Well, as luck would have it, most of the ancient pieces of equipment use 2532 EPROMs, and just this kind is not supported by the common programmers, which support the 2732….. same capacity, different pin layout.

2732 pinout

tms2532-45

tms2532jl-45

To adapt the 2532/2532A (these only differ by their programming voltage, 25 V vs. 21 V – make sure the set it correctly) to the common 2732 programmers, the only thing you need is a small adapter, with a most complicated schematic (the only pins that change are 18, 20 and 21). Most of these EPROMs require programming pulse widths of about 50 ms, but often program OK with just 10 ms, or less.

2532 eprom adapter for programming schematic

2532 programming adapter view 2

2532 programming adapter view 1

BNC 50 Ohm Termination: a rather surprising construction

Doing some precise level measurement on 50 Ohm system, I came across this termination, Model 24931 28P296-1.

termination 1

It’s resistance, not quite 50 Ohms, but 51.1 Ohm… not that the DC resistance is the most important characteristics of a 50 Ohm termination, but nevertheless, a reason to check it.

This termination is constructed using a BNC connector, so I expected some kind of thin film resistor inside, maybe damaged by overload or age, leading to the incorrect resistance.

Opening it up, this it what I found:

termination rn55d 51r1 resistor

termination

The resistive element, a Vishay Dale R55D metal film resistor:
vishay rn55 resistor

And, in fact, it is a 51.1 Ohm, +-100 ppm/K tempco resistor. 0.1 Watts so it is running close to its limit already at 20 dBm! Don’t have the right tools here to measure ‘low frequency’ (< 2 GHz) SWR... but will check back home at the main workshop one time in the future, just for curiosity.

ADCMP580 Ultrafast Comparator: it’s really fast!!

Some experiments with a tiny part that has remarkable qualities: the Analog Devices ADCMP580. It is a comparator, and a very fast one indeed, based on a SiGe semiconductor.

adcmp580 features

Its features are true extraordinary – everything specified in GHz and picoseconds.
Well, can this be made work without a lot of money invested in a special HF or microwave board? Yes, it can. You just have to keep the wires short:

adcmp580 board

This test board was constructed by first soldering thin wires to the chip, and then mounting it on a small piece of perf board, with some epoxy glue. The output is wires, within less than 2 mm, to a (50 Ohm) SMA connector.

adcmp580 schematic

Measuring the performance characteristics is not an easy task. I used a 54750a sampling scope, with a 54751a 20 GHz bandwidth plug-in.

The comparator is fed by a 8642b signal generator, which is also used to trigger the 54751a plug-in.

At the output, a 13.5 dB attenuator is used, at least for some of the tests, to get best output SWR (to avoid issues caused by reflected signals). However, as it turns out, the 54751a has quite reasonable input SWR, and the connecters are better than it first seemed. So the attenuator can be left out. Still good to have some attenuators at the 54751a input, remember, this can only handle +-2 V, and no ESD!

adcmp 500 mhz square

adcmp 2 ghz square

In these tests, “squaring up” a 500 MHz and 2 GHz (!) signal. Rise and fall time are about 50 ps, not bad at all for the simple construction.

adcmp fft

FFT shows bandwith to 10 GHz and up.

Output power is also quite useful, 400 mV Vpp.

Rong Hua (Bianhuan) “50 Watt” Travel Adapter: not enough iron, for this “wattage”

In interesting find, Made in China, a 50 Watt travel adapter.

autotrans sc-20c a

autotrans sc-21c

autotrans sc-21c receptacle

autotrans plug

This is used to convert 220 V (despite the US plug!) to 110 V – same device also seems to exist for conversion from 110 to 220 V.

The build quality is exactly what you expect for less than USD 7. A crude plastic case, two screws, no protection circuits or fuses, and a rather small transformer.

autotrans inside

Total weight of the transformer – about 140 g.

Looking at some transformer tables, this is about 6-10 VA (=”Watt”, if you wish) nominal size. For autotransformers like this, the nominal size needs to be converted to the actual power rating, by using the conversion ratio (voltage ratio). P_nominal=P_actual*(1-voltageratio). I.e., for a 220 to 110 Volts transformer, the ratio is 0.5, and a 10 VA nominal transformer can handle 20 VA if configured as an autotransformer.

Quite obviously, 20 VA is not 50 VA – please use these these transformers with great caution, and only for really small appliances. Never leave it plugged in unattended, it might catch fire any time if overloaded, or if it fails!

Resistive Power Splitter: trying out a low-cost construction

For leveling of signals, or test that require two tracking channels, like tracking insertion loss measurements, a resistive two-element divider is very handy. These are broad-band, and rather robust devices.

One input, two resistors (50 Ohms each), in series with two outputs.

Such devices are available from various suppliers, and cost anywhere from 25 to 300 USD, depending on level of precision and frequency range.

Why not try to build one yourself, with some small 0603 resistors; I used China-made SMA connectors, and 4 pcs of 100 Ohm resistors.

splitter

How does it perform? Well, let’s connect to it a network analyzer and try:

splitter test

Port A through measurement (port B terminated):
thru port a

Port B through measurement (port A terminated):
thru port b

Tracking is pretty good, 0.05 dB @2 GHz, 0.15dB @2 GHz.

ret loss

swr

1.2 input SWR – well, pretty acceptable; might still be able to improve by adding some solder or by changing the length of the pin. Good enough.

Here, some specs of a HP resistive splitter:

hp11667a

Oscillator Driver/PLL: tuning fork oscillator

Recently, a “very special” circuit had to be designed – a driver for a mechanical oscillator. The objective – to find the natural frequency of such oscillators, to a very high degree of precision, and at very small amplitudes, in the µm range.
Measurement of the frequency is easily done by a frequency counter – what is needed is a circuit that keeps the oscillator going at a constant amplitude.

The oscillator (a mechanical tuning fork, metal tube) carries a small magnet that can be used, together with a stationary coil, to make is oscillate and sustain the oscillation.
The movement of the tuning fork is sensed by a light gate – an IR emitter diode, and a photodiode.

The oscillator is running at a few 100 Hz, in a very well thermostated environment.

First part, the photodiode amplifier, and signal conditioning circuits.
osc pickup and amp

The second part, the PLL (a classic 4046), and some auxiliary circuitry to provide monitor outputs.
osc pll-vco
For operation at other frequencies – adjust the VCO timing capacitor, or use an external VCO.

The coil driver – and monitor driver, this is a very low power systems, a few milliamps are plenty for the coil.
osc coil driver

Tesla/Voltcraft BK127C Power Supply: a trusty fellow

One of the first pieces of electronic equipment I have ever owned, maybe the very first, a 0-20 V power supply, 1 A max. current. Made for Voltcraft (brand of the “Conrad” electronic mail-order company, popular in Germany), by Tesla, “Czechoslovakia”.

In the mean time, I have 3 of these, and despite the “1 Amp” limit, these are very useful supplies, and there are hardly any circuits that need more than 1 Amp. The output is reasonably low-noise – very similar to other DC supplies or power packs.

bk127c

Build quality is very sturdy, folded steel – and a basic but very reliable circuit, designed around a uA723.

bk127c schematic

Years ago, I had one of the supplies fail on me, when powering a high voltage circuit – this caused the power transistor, a KD606, to fail. Replaced it with a BD317 – working perfectly fine.

The manual – sorry, in German only.
tesla bk127c pwr supply

Reference Signal Conditioning: 10 MHz amplifier/limiter, :2 divider, 5 MHz output

A common task for most projects involving a PLL or other RF circuitry requiring a reference frequency signal is the conditioning of the incoming reference. These reference signals are typically very accurate in frequency, but never very accurate in levels, nor at the levels constant (sometimes, multiple instruments are connected to a single 10 MHz source, an disconnected when the setup is re-configured etc.). Also, there is always a risk of incorrect connection, with all these BNC inputs.

Therefore, we have a few requirements:

(1) Input needs to be stable to a reasonable DC voltage, say, a few Volts.

(2) Input needs to widthstand at at least 20-25 dBm input, about 0.25 Watts.

(3) Input needs to widthstand ESD, or other transients, and provide reasonable termination to avoid reflection. In the given case, we want about 50 Ohm – some reference inputs have higher resistance.

(4) Circuit needs to work from about -10 dBm on, up to 10 or 20 dBm, with no significant change in jitter, etc., and provide a stable, constant level output, TTL levels, or whatever is required.

The current circuit, which is intended to be a reference signal conditioner for a Micro-Tel MSR-904A Microwave Receiver, also needs a 5 MHz output – the PLL will run off 10 MHz, but the MSR-904A still is ancient enough to require 5 MHz (5 MHz used to be the standard reference frequency from early times up until the end of the 70s – since then, 10 MHz is almost exclusively used, and sometimes, 100 MHz, for double-digit GHz circuits).
Such 5 MHz output is easily realized by a divider circuit, based on a 74F74.

Now, how do we achieve all this. Well, here is the schematic:
ref signal conditioner schematic

The essential part – a 74HCU04. This little circuit is extremely useful – get a handful of these, they are not just “inverters” but acutally work at frequencies from DC to many MHz, can source and sink at least 4 mA to 5 V. The 74HCU04 is more or less a set of 6 push-pull MOSFET pairs, in a handy package. These pairs can also be paralleled with no precautions to get more current, if needed.

The signal input is protected by a 56 Ohm termination (which can burn out if you feed excess DC or more than 0.25 W of RF – unlikely to happen). Then, there is a 47 n decoupling capacitor, a series resistor, and a clipping circuit – which will most likely never be activated.
The 22k resistor, along with the first inverter, and the 470 Ohm resistor form the first amplifier.

Signal A (see letter on schematic, input of first inverter):
ref signal circuit A
-scope is set to 1 V per div vertical, 50 ns per div horizontal.

Output B:
ref signal circuit B

Note that the first gate is self-biased, no need to adjust anything.

This is then squared-up by the limiting action of the following 2 inverters:
ref signal circuit C

ref signal circuit 10 mhz E 1 v-div 50 ns-div

Now, we have a clean 10 MHz square wave. This is fed to a 74F74 edge-triggered flip-flop. The 74F74 is pretty fast, it easily works up to 100 MHz and will provide fast-rising edges.
The flip-flop will also ensure pretty much exact 50% duty cycle of the 5 MHz output.

ref signal circuit 5 MHz F

The output is fed through a low pass, 51 Ohm – 470 p, about 6.6 MHz, because we want low jitter at the divider stage (fast rise time pulses feeding the flip-flop), but not too steep edges at the output:
ref signal circuit G

After amplification by another 74HCU04 inverter:
ref signal circuit 5 MHz H
– this signal is still referenced to ground, and after another resistor and capacitor, finally, an AC signal, that can be used for various purposes, including frequency locking a MSR-904A.
ref signal circuit 5 mhz output I

Note: when you measure in such circuits, always use a >10 Meg, 10:1 low capacitance probe. Otherwise, you will get results, but these won’t reflect reality.

A quick test with a 10 MHz test signal – the circuit works well from about -22 dBm to 20 dBm, no issues at all. For the specification, and to ensure that is is working even under awkward conditions, we might limit it to -10 dBm to +16 dBm.

The little thing in action:
ref signal circuit test setup

HP Fundamental/Harmonic Mixer 5086-7285 (22 GHz): digital bias control

In an effort to build a 2-18 GHz down converter, a HP mixer 5086-7285 needs to be controlled. This is one of a group of 22 GHz mixers, all used in earlier HP spectrum analyzers. These mixers are very linear, and useful both at fundamental and harmonic frequencies.

That’s the little magic thing, and the frequency list-harmonics:
5086-7285 mixer
5086-7285 mixer harmonics

All in all, at a first glance, pretty easy to use – it only needs +10 and -10 V power supply and bias for the diode.

Well, bias, after looking through the schematics, this is the assembly taking care of it: a board full of resistors and amplifiers, with no less than 22 (!) adjustment pots.
08565-60023 bias assembly

The interesting part are the bias drivers itself –
hp bias circuit for harmonic mixer
– the linearization, etc., this can all be done easily by using digital memory and a DAC nowadays, but the drivers, we still need them.

The bands B3 and B5, the even harmonics, the things are clear and as expected – a voltage source, and a resistor. Easy enough. But, what did HP do for the odd harmonics?? – the are a few extra resistors around the opamps, and these resistors make it a tricky thing. Too tricky to make it easy to understand. Some kind of negative resistance circuit/kind of a voltage to current converter, which depends a bit on the load resistance.

So, what do you do to understand such things better – build a little test circuit, here we go:
mixer bias test circuit
-it is essentially the same circuit, as for the B1/B4/B2 bands, U6B of the HP circuit- just left out the switching transistor.

It works pretty well, and as a U to I converter, see here:
bias driver test 200 mv-div ramp  1 mA-div current
– ramp voltage is the drive signal, 800 mV p-p, 200 mV per div (center line is zero). During the negative signal period, the output is active – current signal is 1 mA per div (center line is zero).

Having the basic functionality of the ciruit confirmed – some calculations with LTSpice, one of the best general purpose analog simulators around, Thank You, Linear Technology!

Here the files, in case you want to investigate it yourself:
hp mixer bias

This is a typical result, mixer bias current, vs. input voltage of the circuit, at resistance (of the mixer), of 950 (steepest)-1050-1150-1250 ohms.
r6-92 1-9 bias rscan vs Vi
So, this cirucit really is a U to I converter, with the slope depending on the load resistance.
Also note the model circuit of the mixer internal resistor and diodes. The two diodes and the 970 Ohm resistor are the result of bias current vs. bias voltage measurement. Bias voltage is in the range of -1 to -7 volts, about 0 to 8 mA.

With these findings, next step will be to build a driver circuit that can work fully digitally controlled, with no adjustment pot at all (series resistors will be manually selected).