Category Archives: Microwave

Another Micro-Tel 1295 Precision Attenuation Measurement Receiver: irresistible green

I am trying hard to resist the temptation of buying more test equipment, but the Micro-tel special green color has a hypnotic effect on me, and combined with the right price, I could not resist to buy one more Micro-tel 1295 receiver. These are very capable 0.01~40 GHz fundamental-mixing receiver (fundamental mixer until 18 GHz, above that, harmonic mixer), with very large range, like, 120 dB, and 0.001 dB attenuation resolution. Ideally suited to calibrate attenuators or to check antennas, etc.

The unit – offered as non-working – arrived very well packed. Unfortunately, many people send sensitive equipment in some thin cardboard boxes. This particular equipment cost close to 85 kEUR in 1989, plus mixers. Also, it has long been under export control from the US, because of its unique range and accuracy.

Bubble wrap, other fibre wrap inside.

Finally all in foil.

The defect, it doesn’t show any reading on the display, and both the HI and LO leds are on, which is abnormal. The 1295 has a 12 dB range bolometer detector, any signal below 0.5 dB or above 12.5 dB will light up the LO or HI lamp, and you would need to select another 10 dB step of the IF attenuator (a high precision 30 MHz attenuator), or let the automatic attenuation selector do the job.

There are many boards inside, but all nicely numbered and with instructions in the manual.

The HI and LO level detection is done on the A3B2 assy.

According the the schematic, U2, a MC1458 generic dual opamp is switching the LEDs and providing signals to drive the automatic attenuation selector.

A quick check revealed that U2 is defective, so I replaced it quickly, and this already solved the issue and brought back the display.

Another trouble related to unstable lock of the 2.3 GHZ auxiliary LO that is used for the 0.01-2 GHz range (which uses a two-stage down mixing).

Fortunately, I had a spare 2.3 GHz from my parts unit (which I bought years ago – a partial unit – while I was living in the US). That part was missing one of its covers, and had also some issues earlier, but I had fixed it a while back just for curiosity. Now I can fix the unstable 2.3 GHz removed from the unit during next winter. It has a 2.3 GHz VCO, a 100 MHz local oscillator and a PLL inside.

After calibrating all the oscillator frequencies, which went without trouble, I noticed that the top 120 dB attenuator was 0.04 dB off, well, not a big deviation, but I would rather have the unit working perfectly. So I removed the attenuator for further study.

It is build with really high quality relais, more than USD 50 (each!!), and some precision resistors.

Nothing could be found wrong with the unit by visual inspection.

Also I used the VNA to check the attenuator, and all seems well working.

All the 3 segments, virtually equal at 10 dB each.

Finally, I put everything back together, a little clueless, but, now, for some reason, all is working and stable. Maybe it was some lose connector, or other strange effect that is now gone. All attenuators calibrated perfectly, using by HP 3335A level generator (which has a top-accuracy attenuator).

Finally the 1295, working just perfectly fine. Maybe better than ever before.

Interestingly, as with all of these Micro-tel devices, the side and top/bottom panels were painted with various kinds of special military paint – some with a rubberized paint that will dissolve into some gluey substance over time, some with a type of “abrasive” paint, other already re-painted in forest green.

The paint has very large and hard grit, almost like sandpaper. But I will leave it untouched, it seems the original looks for this serial number range (the 1295 seems to have been in production for 10+ years).

Now, a little gallery of all my Micro-tel 1295 receivers: the first two, part of my frequency-locked attenuator calibrator (can measure reflection and transmission at the same time).

One as part of an E-band (60-90 GHz down-converter).

Any now, already two spare units in perfect calibration.

Still, in the basement, a box of spares… likely I won’t run short of receivers soon. Maybe even buy another one should it come around.

HP 11517A aka 08747-60022 Harmonic Mixer: a little study of a very intriguing device

As part of a HP R8747A 26.5-40 GHz reflection/transmission test unit (for the 8411A network analyzer; 6300 USD in 1973 — about 40 kEUR today), I got two HP 08747-60022 harmonic mixers, one didn’t seem to work right, the diode has just 0.2 V voltage drop. These were fairly fragile devices, only designed for 1 mW of power, and very static sensitive, point contact devices.
In addition to the regular 11517A, the 08747-60022 has a bias connection (needs about 1.5 V DC bias, center positive).

The main unit can work from 12 to about 40 GHz, with a set of adaptor waveguides.

The unit can be taken apart, all precision machined.

The diode is pressed in, on some holder (haven’t tried to remove it from the case).

There are several other precision parts, a coaxial resistor, held on to the diode with a spring.

There is also a spacer, with a very flat capacitor, a DC block. The spacer is modified to connect the center conductor to a surface at the perimeter (used for DC bias).

Further up, there is a low-pass, machined from a single piece and gold plated.

The N-type connector, stainless, is screwed on.

The DC bias uses a small 1.5 kOhms resistor, and a custom connector, so that the resistor is pushed onto the spacers’s connection.

Here, a quick schematic. Seems a lot of engineering went into this device…

Finally, we need a microscope to study further here, the diode (the square), about 0.25 mm side length. It is isolated from the case by an air gap.

The diode is made by a contact junction, a small tungsten(?) whisker.

Probably, this whisker needed some adjustment during manufacturing. I tried to adjust it a bit, but this didn’t change the diode characteristics of my broken unit, unfortunately (anyway, these devices are more for study than for use; currently using only cartridge-based diode mixers).

Also, looking into the waveguide of the assembled mixer, with good long-range optics, I could get a shot of the actual point contact in action. Very interesting historic technology.